New Expressions of 2 , ˟, 2 Block Matrix Inversion and Their Application
نویسندگان
چکیده
where ~ Q 2 3n is the column vector composed of all the vectors ~ qj, for j = 1;. .. ;n, and the matrix M(t) = [m jk (t)] 2 n2n is given by; m jj (t) = 1j + n k=1 k p jk ~ k , and m jk (t) = 0k p jk ~ j. We can see that the formation has converged to the desired trajectory and consequently all spacecraft are aligned only if ~ Q = 0. A necessary and sufficient condition for this is that the matrix M(t) has full rank. We can easily verify that matrix M(t) is strictly diagonally dominant if condition (21) is satisfied, [1]. This implies that the only solution of (A6) is ~
منابع مشابه
ON THE FUNCTION OF BLOCK ANTI DIAGONAL MATRICES AND ITS APPLICATION
The matrix functions appear in several applications in engineering and sciences. The computation of these functions almost involved complicated theory. Thus, improving the concept theoretically seems unavoidable to obtain some new relations and algorithms for evaluating these functions. The aim of this paper is proposing some new reciprocal for the function of block anti diagonal matrices. More...
متن کاملA Direct Matrix Inversion-Less Analysis for Distribution System Power Flow Considering Distributed Generation
This paper presents a new direct matrix inversion-less analysis for radial distribution systems (RDSs). The method can successfully deal with weakly meshed distribution systems. (WMDSs). Being easy to implement, direct methods (DMs) provide an excellent performance. Matrix inversion is the mean reason of divergence and low-efficiency in power flow algorithms. In this paper, the performance of t...
متن کاملAPPLICATION OF HAAR WAVELETS IN SOLVING NONLINEAR FRACTIONAL FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS
A novel and eective method based on Haar wavelets and Block Pulse Functions(BPFs) is proposed to solve nonlinear Fredholm integro-dierential equations of fractional order.The operational matrix of Haar wavelets via BPFs is derived and together with Haar waveletoperational matrix of fractional integration are used to transform the mentioned equation to asystem of algebraic equations. Our new met...
متن کاملInversion of block matrices with block banded inverses: application to Kalman-Bucy filtering
We investigate the properties of block matrices with block banded inverses to derive efficient matrix inversion algorithms for such matrices. In particular, we derive the following: (1) a recursive algorithm to invert a full matrix whose inverse is structured as a block tridiagonal matrix; (2) a recursive algorithm to compute the inverse of a structured block tridiagonal matrix. These algorithm...
متن کاملLarge-scale Inversion of Magnetic Data Using Golub-Kahan Bidiagonalization with Truncated Generalized Cross Validation for Regularization Parameter Estimation
In this paper a fast method for large-scale sparse inversion of magnetic data is considered. The L1-norm stabilizer is used to generate models with sharp and distinct interfaces. To deal with the non-linearity introduced by the L1-norm, a model-space iteratively reweighted least squares algorithm is used. The original model matrix is factorized using the Golub-Kahan bidiagonalization that proje...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Automat. Contr.
دوره 54 شماره
صفحات -
تاریخ انتشار 2009